English 中文 日本語 한국어 Русский
Связанные статьи Баннер

Исследовательские работы
С использованием NOKOV Motion Capture

Исследования с использованием передовых решений для захвата движения от NOKOV
Sort by Date
All Робототехника и инженерия Параллельный робот Робот на колесно-опорных ногах Сельскохозяйственный робот Гуманоидный робот Мягкий робот Инспекционный робот Медицинский робот Бионический робот UAV/UGV Экзоскелет Роботизированная рука Мобильный робот Система мульти-роботов Носимые устройства Континуум-робот Человеческое тело Животные SLAM Избежание препятствий/столкновений Формация/Рой Манипуляция Навигация Локализация Восприятие Планирование Контроль Ловкая рука Взаимодействие/Сотрудничество Человека и Робота Видение Marine&underwater Сотрудничество Смещение Изучение Телеуправление Тактильные технологии Концевые эффекторы Планирование движения Планирование траектории Планирование маршрута Ручной мокап Роботизированная хирургия Особый
Duan, M.; Lei, X.; Duan, Z.; Zheng, Z. A Minimalist Self-Localization Approach for Swarm Robots Based on Active Beacon in Indoor Environments. Sensors 2023, 23, 4926. https://doi.org/10.3390/s23104926
Xiong H, Shi X, Liu J Z, et al. A swarm model with constraint coordination mechanism for unmanned aerial vehicle swarm formation maintenance in dense environments[J]. Industrial Robot: the international journal of robotics research and application, 2024.
J. Lou, W. Wu, S. Liao and R. Shi, "Air-M: A Visual Reality Many-Agent Reinforcement Learning Platform for Large-Scale Aerial Unmanned System," 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 55
G. Chen, W. Dong, P. Peng, J. Alonso-Mora and X. Zhu, "Continuous Occupancy Mapping in Dynamic Environments Using Particles," in IEEE Transactions on Robotics, vol. 40, pp. 64-84, 2024, doi: 10.1109/TRO.2023.3323841.
C. Ma et al., "Decentralized Planning for Car-Like Robotic Swarm in Cluttered Environments," 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 9293-9300, doi: 10.1109/IROS55552.2023.10342360.
Y. Liu, Z. Cao, H. Xiong, J. Du, H. Cao and L. Zhang, "Dynamic Obstacle Avoidance for Cable-Driven Parallel Robots With Mobile Bases via Sim-to-Real Reinforcement Learning," in IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1683-1690, March 2023
Lei Xiaokang, Xiang Yalun, Duan Mengyuan and Peng Xingguang 2023Exploring the criticality hypothesis using programmable swarm robots with Vicsek-like interactionsJ. R. Soc. Interface.2020230176.https://doi.org/10.1098/rsif.2023.0176
Feng P, Liang J, Wang S, et al. Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks[J]. arXiv preprint arXiv:2407.08164, 2024.
N. Hao, F. He, C. Tian, Y. Yao and W. Xia, "KD-EKF: A Consistent Cooperative Localization Estimator Based on Kalman Decomposition," 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 2023, pp. 11064-11070, d
Y. Zhang, R. Zhou, X. Li and G. Sun, "Mean-Shift Shape Formation of Multi-Robot Systems Without Target Assignment," in IEEE Robotics and Automation Letters, vol. 9, no. 2, pp. 1772-1779, Feb. 2024, doi: 10.1109/LRA.2024.3349926.
G. Lai, C. Shi, K. Wang, Y. Yu, Y. Dong and A. Franchi, "Multi-Agent Visual-Inertial Localization for Integrated Aerial Systems With Loose Fusion of Odometry and Kinematics," in IEEE Robotics and Automation Letters, vol. 9, no. 7, pp. 6504-6511, July 2024
L. Shi, W. X. Zheng, Q. Liu, Y. Liu and J. Shao, "Privacy-Preserving Distributed Iterative Localization for Wireless Sensor Networks," in IEEE Transactions on Industrial Electronics, vol. 70, no. 11, pp. 11628-11638, Nov. 2023, doi: 10.1109/TIE.2022.32312
Xiang, Y.; Lei, X.; Duan, Z.; Dong, F.; Gao, Y. Self-Organized Patchy Target Searching and Collecting with Heterogeneous Swarm Robots Based on Density Interactions. Electronics 2023, 12, 2588. https://doi.org/10.3390/electronics12122588
B. Li et al., "Sharing Traffic Priorities via Cyber–Physical–Social Intelligence: A Lane-Free Autonomous Intersection Management Method in Metaverse," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 4, pp. 2025-2036, April 202
Wen X, Wang Y, Zheng X, et al. Simultaneous Time Synchronization and Mutual Localization for Multi-robot System[C]//2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024: 2603-2609.
K. Ze, W. Wang, K. Liu and J. Lü, "Time-Varying Formation Planning and Distributed Control for Multiple UAVs in Clutter Environment," in IEEE Transactions on Industrial Electronics, vol. 71, no. 9, pp. 11305-11315, Sept. 2024, doi: 10.1109/TIE.2023.333544
Wang Z, Wan C, Lv X, et al. Multi-UAV online path planning algorithm based on improved Hybrid A[C]//2023 6th International Symposium on Autonomous Systems (ISAS). IEEE, 2023: 1-6.
T. Zhang, Z. Liu, Z. Pu and J. Yi, "Multi-Target Encirclement with Collision Avoidance via Deep Reinforcement Learning using Relational Graphs," 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 8794-8800
Xiaokang Lei, Shuai Zhang, Yalun Xiang & Mengyuan Duan, Self-organized multi-target trapping of swarm robots with density-based interaction, Complex & Intelligent Systems,2023
Shuai Zhang,Xiaokang Lei,Zhicheng Zheng,Xingguang Peng,Collective fission behavior in swarming systems with density-based interaction,Physica A: Statistical Mechanics and its Applications,The University of Hong Kong,Xi'an University of Architecture and Technology,Northwestern Polytechnical University
Cheng Xu,Xinxin Wang,Shihong Duan,Jiawang Wan,Spatial-temporal constrained particle filter for cooperative target tracking,Journal of Network and Computer Applications,University of Science and Technology Beijing
Shiguang Wu,Zhiqiang Pu,Tenghai Qiu,Jianqiang Yi,Tianle Zhang,Deep Reinforcement Learning based Multi-target Coverage with Connectivity Guaranteed,IEEE Transactions on Industrial Informatics ,Institute of Automation, Chinese Academy of Sciences

Используя этот сайт, вы соглашаетесь с нашимиусловия, которые описывают наше использование файлов cookie.ЗАКРЫТЬ×

Контакт
Мы стремимся реагировать оперативно и свяжемся с вами через наших местных дистрибьюторов для дальнейшей помощи.
ИнженерияВиртуальная реальностьНауки о движенииРазвлечения
Я хотел бы получить предложение
Пекин NOKOV Science & Technology Co., Ltd (штаб-квартира)
Место нахожденияRoom820, China Minmetals Tower, район Чаоян, Пекин
Электронная почтаinfo@nokov.cn
Телефон+ 86-10-64922321
Объем захвата*
Цель*
Полные телаДроны/РоботыДругие
Количество
Тип камеры
Pluto1.3CMars1.3HMars2HMars4HПодводныйДругие/Я не знаю
Количество камер
46812162024Другие/Я не знаю